An extended multireference study of the electronic states of para-benzyne.

نویسندگان

  • Evan B Wang
  • Carol A Parish
  • Hans Lischka
چکیده

A state-averaged, multireference complete active space (CAS) approach was used for the determination of the vertical excitation energies of valence and Rydberg states of para-benzyne. Orbitals were generated with a 10- and 32-state averaged multiconfigurational self-consistent field approach. Electron correlation was included using multireference configuration interaction with singles and doubles, including the Pople correction for size extensivity, multireference averaged quadratic coupled cluster (MR-AQCC), and MR-AQCC based on linear response theory. There is a very high density of electronic states in this diradical system-there are more than 17 states within 7 eV of the ground state including two 3s Rydberg states. All excitations, except 2 (1)A(g), are from the pi system to the sigmasigma(*) system. Of the 32 states characterized, 15 were multiconfigurational, including the ground (1)A(g) state, providing further evidence for the necessity of a multireference approach for p-benzyne. The vertical singlet-triplet splitting was also characterized using a two-state averaged approach. A CAS(2,2) calculation was shown to be inadequate due to interaction with the pi orbitals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying Density Functional Theory to Study NLO Properties of Benzyne-Based Chromophores

Density Functional Theory (DFT) calculations were employed to investigate the structural characteristics, electronic properties, and nonlinear optical properties of Benzyne-Based Chromophores at B3LYP/6-31G(d,p) level. The effects on the hyperpolarizabilities of various donor and acceptor substituent (H, F, Cl, Br, Me, NH2, OH, NH3+, COOH, CHO, CN, NO,NO2 ) were studied. The results reveale...

متن کامل

2,3-Didehydro-1,4-benzoquinone. A quantum thermochemical study

Correlated electronic structure calculations at single and multireference levels of theory have been carried out for several neutral and radical anion electronic states of 2,3-didehydro-1,4-benzoquinone, a quinone analog of o-benzyne. The molecule is predicted to be a ground-state singlet (1A1) with a 298 K heat of formation of 200.6 kJ mol , a heat of hydrogenation (1 equiv.) of 323.5 kJ mol ,...

متن کامل

Can density cumulant functional theory describe static correlation effects?

We evaluate the performance of density cumulant functional theory (DCT) for capturing static correlation effects. In particular, we examine systems with significant multideterminant character of the electronic wave function, such as the beryllium dimer, diatomic carbon, m-benzyne, 2,6-pyridyne, twisted ethylene, as well as the barrier for double-bond migration in cyclobutadiene. We compute mole...

متن کامل

Chemical properties of a para-benzyne.

5,8-Didehydroisoquinolinium ion, a para benzyne analogue, was generated in a Fourier transform ion cyclotron resonance mass spectrometer, and its reactivity toward various neutral reagents was examined. A direct comparison of the reaction kinetics of the para benzyne, a meta isomer, and analogous monoradicals, indicates that the para benzyne is a poorer electrophile but a more reactive radical ...

متن کامل

Direct location of the minimum point on intersection seams of potential energy surfaces with equation-of-motion coupled-cluster methods

An implementation of the projected gradient method for locating the minimum energy crossing point between electronic states of different symmetry/multiplicity within the equation-of-motion coupled-cluster family of methods is reported. The method is applied to characterize the intersections between electronic states in N3 , NO2, and para-benzyne using the excitation energies, ionization potenti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 129 4  شماره 

صفحات  -

تاریخ انتشار 2008